Smart Grids, Smart Meters and Integrated Communications

Jeff Tolnar
Chief Technology Officer
BPL Global
Presentation Contents

• About BPL Global
• Where are we?
• Definition of a “Smart Grid” and the role of the smart meter
• Integrated communications
• Benefits of a smart grid
• How do we get there?
About BPL Global

- Formed in 2004, HQ in Pittsburgh
- Develop, deploy, and manage Smart Grid and Broadband solutions
 - Develop/support Smart Grid applications for utilities
 - Provide broadband services to utility customers
 - Regional Partners – utilities, ISP, and financial

Map of BPL Global HQ and Regional Offices:
- PITTSBURGH
- SAN FRANCISCO
- PARIS
- ATHENS
- KUWAIT
- SÃO PAULO
- HONG KONG
Where are we now?

We have work to do!

- Stand alone systems
- Incomplete & Inadequate Communications
- Unmonitored / Unmanaged devices
- Limited information (lots of data)

Utility Internal
- Asset Mgmt
- Outage Mgmt System
- Work Force Mgmt
- SCADA / Telemetry

Customer Facing
- Customer Information System
- Meter Data Mgmt
- AMR systems

IT
- Trouble Ticketing

Backhaul
- Fiber/wireless

Last Mile / In-Prem
- Medhaul

Devices, Sensors
- Sensors
- Distributed Resources
- Switching & Protection
- Cap Banks
- Recloser
- Fuses
- Grid Meters
- Analog Meters
- AMR/AMI Meters

Customer premises
- Cellular/PLC

Distribution Substation

Distribution Grid
What is a smart grid?

- Specific smart grid definitions vary
 - CEATI: activities, functionalities, technologies
 - DOE – Modern Grid Initiative: Integrated Communications, Advanced Components, Sensing & Measurement, Advanced Control Methods, Improved Interfaces and Decision Support
 - EPRI – IntelliGrid, methodology, technology, distributed information, business needs

- Different...but the same!
- This is not just a North American issue
Smart Grid Common Traits

- Advanced sensors and measurements
- Real time monitoring and control systems
- Integration of distributed energy resources
- Integrated communications
Advanced Sensors and Measurements

• Placed at critical points along the grid and monitored elements (cap bank, recloser, fuse points, etc.)
 • Must be low cost, easy to deploy with two way communication
 • Assessing the state and condition of grid elements – outage detection
 • Establishing capacity and failure probability in real-time
 • Providing the basis for advanced system protection

• Meters and Premise control devices
 • Use meters as a sensor not just a billing mechanism (real-time consumption data, PQ, etc)
Distributed Energy Resources

- DER is proceeding across the world
 - Address the supply/demand imbalance
 - Improves grid reliability and asset life
 - Buys time for major capital upgrades
 - Some driven by the utility, some by end users

- Must be integrated
 - Physically to the grid and its protection schemes
 - Requires two-way communications
 - Systems linkages are needed in the operations center

- Smart meters could play a key role
 - Extend operation
 - Could ease cold load pickup
Real Time Monitoring and Control Systems

- A smart grid system requires information in real time
 - “Real time” is driven by the applications that the utility desires
 - Systems must be flexible, scalable, and easily integrate to legacy and new applications
- System implementation will be incremental
 - First- Integrate data scheme for cross application usage
 - Second- present application data as useful information
 - Third- integration with business and operational processes
 - Fourth- advanced analytics and cross app correlation for decision support
 - Fifth- use the information to automate functionality on the grid
- The result is a grid that is robust, interactive and responsive to constantly changing supply and demand
Integrated Communications

- The key to a smart grid is communications
 - Must be fast enough to meet the real time needs of the system
- Many different technologies can be used
 - Wireless, Cellular, PLC, BPL
 - Each has strengths and weaknesses
Integrated Communications

- **Key considerations**
 - Ease of deployment
 - Cost – opex, capex
 - Latency
 - Standards
 - Data carrying capacity (speed)
 - Secure
 - Regulatory
 - Coverage capability

- **How much is needed?**
 - You are only carrying bits but the bits aggregate quickly—50 bits/sec/household handles most apps
 - Do the apps control equipment or just deliver information – latency vs. speed
 - Some advanced apps need more – video surveillance, work crew communications, etc.
Integrated Communications

Technology Comparison and Risk Profile

<table>
<thead>
<tr>
<th>Technology</th>
<th>Deployability</th>
<th>Cost – Capital</th>
<th>Cost - Ops</th>
<th>Latency</th>
<th>Speed</th>
<th>Regulatory</th>
<th>Standards</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellular</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td><100Kbps</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>900MHz</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td><1Mbps</td>
<td>L</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>WiFi/WiMAX</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>2-30+Mbps</td>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Licensed</td>
<td>M</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>2-30+Mbps</td>
<td>M</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>Microwave</td>
<td>M</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>10-500Mbps</td>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>Wired</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLC</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td><100Kbps</td>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>DSL</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td><3Mbps</td>
<td>L</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>BPL</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>2-30+Mbps</td>
<td>M</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Fixed line</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>2-30+Mbps</td>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>Fiber</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>>Gbps</td>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

- No one technology fits all applications
- Multiple factors must be considered
- A mix of technologies will be needed
Benefits of a smart grid

- It won’t be easy, cheap or short term
- A smart grid requires information from the premise (e.g. smart meters) and throughout the grid
 - Real time, two way, remote functionality
- Benefits are widespread and significant
 - A 2004 EPRI study quantified the benefits from a Smart Grid
 - Cost of implementation estimated at $165 billion over 20 yrs
 - Investment would yield a 20-year net benefit of between $638 billion and $802 billion

Estimated Net Present Worth ($Billions) of improvements for attributes over the 20-year study period
How do we get there

- One step at a time
 - Decisions made incrementally but with a holistic view
 - Evaluate and act on the biggest issues first – regulatory drivers, operational, etc.
- Implementation steps
 - Deploy sensor technology to identify operational conditions
 - Canadian regulatory drivers enable information from the premise – use it for more than just a billing mechanism
 - Add monitoring and control mechanisms to existing grid elements (e.g. cap banks, reclosers, switches, etc.)
 - Include IT to prepare for broad systems requirements
 - Integrate business and operational processes
 - Communications must be deployed along each step
 - Add advanced analytics and correlations as you go
 - Prepare for automation
Thank You!

For more information, please contact:

Jeff Tolnar – CTO, BPL Global

Phone: +1 614 364 7942 (office)
 +1 614 571 7550 (mobile)

Email: jtolnar@bplglobal.net
 www.BPLGlobal.net